PlatoNeRF: 3D Reconstruction in Plat's Cave via Single-View Two-Bounce Lidar

Tzofi Klinghoffer, Xiaoyu Xiang, Siddharth Somasundaram, Yuchen Fan, Christian Richardt, Ramesh Raskar, Rakesh Ranjan CVPR2024

Recovering 3D scene geometry from a single-view is critical

- for many applications, ranging from autonomous vehicles(AV) to extended reality(XR).
 - ex) Imagine the ball drops and bounces behind your couch in XR

Single-View 3D Reconstruction is Challenging

Existing Methods

- Single-view 3D reconstruction with NERF
 - challening, either rely on data priors or use visual cues(shadows) to infer occluded geometry from a single view
- Diffusion, Transformers,...
 - rely on data priors
 - hallucinate content which may not be physically accurate

Single-Photon Lidar

Single Photon Avalanche Diode

PlatoNeRF : NeRF + Single-Photon Lidar

• GOAL: To reconstruct visible & occluded geometry from a single view

Method Outline

- illuminate individual points in the scene with a laser
- two-bounce light contains infos:

scene depth

- presence of shadows created by the laser
- train NeRF to reconstruct the two-bounce ToF

=> higher accuracy, operate with higher ambient light & lower scene albedo, better generalization

<Experimental Setup>

-Lidar system = SPAD sensor(x_s) + Laser(x_l)

-Laser sequentially points at K different points :{ $l_1, ..., l_k$ }

-For each illumination point, an image is captured

<One Bounce vs Two Bounce> $x_{l} \rightarrow 1 \rightarrow x_{s}$: one-bounce $x_l \rightarrow 1 \rightarrow x_p \rightarrow x_s$: two-bounce -For each image: the pixel observing scene point l measures one-bounce signal, and all other pixels measure two-bounce signals or shadows

<Transient Measurement>

- Each image is a transient measurement
- measures the amount of light arriving at every pixel at a given time
- histogram of light intensity

$$t_{\text{peak}} = \frac{d}{c} = \frac{d_1 + d_2 + d_3}{c}$$
(1)
= $\frac{\|\mathbf{x}_l - \mathbf{l}\|_2 + \|\mathbf{l} - \mathbf{x}_p\|_2 + \|\mathbf{x}_p - \mathbf{x}_s\|_2}{c}$, (2)

<Shadow Measurement>

- If x_p lies in shadow, no twobounce signal will be measured.

Two-Bounce Volumetric Lidar Rendering <Rendering Primary Rays>

 Goal of rendering along the primary ray : to compute the two bounce tof^t_{peak} by determining the depth d3

$$\hat{d}_3(\mathbf{r}_p) = \sum_{i=1}^N T_i \alpha_i t_i$$

 $\mathcal{L}_{\text{primary}} = \|t_{\text{peak}} - \hat{t}_{\text{peak}}\|_2^2$

Two-Bounce Volumetric Lidar Rendering <Rendering Secondary Rays>

 Goal of rendering secondary ray : to determine if xp lies in shadow or not.

$$p_{\text{shadow}} = \prod_{j=1}^{N-1} \left(1 - \alpha_j\right)$$

 $\mathcal{L}_{\text{secondary}} = \|s - \hat{p}_{\text{shadow}}\|_2^2$

Datasets

Simulated Datasets

Datasets

• Real Datasets (for validation)

Results

- Baselines
 - Bounce-Flash(BF) Lidar
 - $-s^3$ NeRF
- Metrics
 - L1 depth error
 - PSNR
 - Chamfer distance

Results

• Simulated Results

	Chair Scene			Dragon Scene			Bunny Scene			Occlusion Scene		
	Train View	Test Vi	iews	Train View	» Test Views		Train View	Test Views		Train View	Test Views	
Approach	L1 Depth ↓	L1 Depth \downarrow	PSNR †	L1 Depth↓	L1 Depth↓	PSNR †	L1 Depth ↓	L1 Depth ↓	PSNR †	L1 Depth ↓	L1 Depth \downarrow	PSNR †
BF Lidar	0.0348	0.1837	19.63	0.0233	0.1049	22.58	0.0339	0.0660	25.16	0.0341	0.2151	18.96
S ³ -NeRF	0.0602	0.1178	22.80	0.0619	0.1042	25.06	0.0633	0.0877	27.67	0.0682	0.1336	22.51
PlatoNeRF	0.0222	0.0862	26.58	0.0186	0.0870	28.45	0.0191	0.0601	30.26	0.0185	0.0836	27.33

Approach	Chamfer (Mean)↓	Std.↓
BF Lidar	0.0465	0.0014
S ³ -NeRF	0.4129	0.0021
PlatoNeRF	0.0280	0.0014

Results

• Real-World Results

Ablation Study

• Ablations on Lidar Sensor

Spatia	l Resoluti	on	Temporal Resolution			
L1 Depth (m)				L1 Depth (m)		
Downsample	Ours	BF Lidar	Upsample	Ours	BF Lidar	
128×128	0.0880	0.1236	256 ps	0.0965	0.2802	
64×64	0.0932	0.1759	512 ps	0.1210	0.3119	
32×32	0.1070	0.1799	1024 ps	0.1833	0.3510	

• Ablations on Scene Properties

A	mbient Li	ght	Scene Albedo			
	L1 D	epth (m)		L1 Depth (m)		
Intensity	Ours	S ³ –NeRF	Albedo	Ours	S ³ –NeRF	
0	0.0862	0.1178	$0 \times less$	0.0862	0.1178	
4	0.0794	0.3080	$4 \times less$	0.0859	0.2152	